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It is proved that the maximum number of collisions among three identical hard 
spheres in more than one dimension is four. It is conjectured that the maximum 
number of collisions among n hard spheres in d dimensions is independent of d, 
provided d~> n - 1. 
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1. I N T R O D U C T I O N  

The systematic generalization of the Boltzmann equation, which describes 
the nonequilibrium properties of dilute gases, to higher densities leads to 
a number of dynamical questions. This generalization is usually carried 
out using cluster expansions, which reduce the dynamical many-particle 
problem of the entire gas to that of isolated groups of 2, 3, 4,... particles. (1) 
In this way the very complicated collision sequences occurring in the many- 
particle problem are reduced to those of small subsets of particles, free 
from the influence of particles outside the subset. The classical work of 
Boltzmann dealt with the simplest possible case where only subsets of two 
particles undergoing a single binary collision were considered. (2) Extension 
of this treatment to include the effects of the correlation of successive colli- 
sions among particles in subsets of more than two requires a determination 
of the set of sequences of collisions which are dynamically possible among 
these particles. Then the dynamics of each particular sequence (in particular 
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its time evolution) can be studied to determine its contribution to the 
various nonequilibrium properties of the entire gas, such as the transport 
coefficients. 

The simplest subset of particles after the pair studied by Boltzmann is 
of course a set of three particles, and a particularly simple nontrivial 
dynamical case is that of three classical, Newtonian, perfectly elastic hard 
spheres of equal mass and diameter, which we will deal with in this paper. 
Although we use the term "spheres," we do not restrict ourselves to systems 
in three dimensions; thus our particles are more properly called "rods" 
in a one-dimensional system, "disks" in a two-dimensional system, and 
"hyperspheres" in a system of more than three dimensions. We will address 
ourselves to one of the simplest dynamical questions about this system: 
what is the maximum possible number of collisions among these three 
spheres? 

It is expected that the study of this particular system will throw some 
light on more complex cases, particularly on those involving more than 
three particles. Results obtained for this system are, however, useful in their 
own right; Sengers et  al. (~ have already used the results for this subsystem 
in their calculation of the density dependence of the transport coefficients 
of a moderately dense hard-sphere gas. 

To enumerate the possible sequences of collisions, we need only make 
use of the simple Newtonian dynamics of identical hard elastic spheres: 
between collisions the particles move uniformly at constant velocity; upon 
colliding they simply exchange the components of their velocities along 
their line of centers. All the rest is geometry. 

Although it has long been known that in one dimension a maximum 
of three collisions is possible (after the third collision, in the reference frame 
of the "middle" particle, the particles on either side are moving away; see 
Section 2 below, and also Appendix A), it was found by Thurston and 
Sandri, (4~ and independently by Foch, (5~ that initial conditions exist in 
two or more dimensions which can lead to a sequence of four collisions. 
Subsequently, Sandri et  aL (6~ stated that a proof existed that four was the 
maximum possible number of collisions; the present authors (7~ published a 
brief outline giving all the steps of a complete proof. Now due to perceived 
present interest in the topic, and in the hope that more detail will be useful 
to those who may wish to extend our results, we present our proof in a 
fuller form with all details. 

2. O V E R V I E W  

The strategy used in the proof is illustrated by the far simpler proof 
that in one dimension no more than three collisions can occur. 
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Let the central particle be denoted as 2; since the particles (or "rods") 
all lie on a line, it is evident that the outer particles 1 and 3 can never collide 
with one another. Since the particles travel uniformly at constant velocity 
between collisions, we need never consider a sequence of two successive 
collisions involving the same two particles. If we denote the outer particle 
which takes part in the first collision as 1, then the only sequence of three 
collisions which can occur is one in which first 1 collides with 2, then 
2 with 3, and then 1 with 2 again. We use the notation (12)(23)(12) to 
denote this sequence, and refer to it as the "recollision sequence." 

We choose the z axis to run from particle 2 to particle 1, and coor- 
dinates such that immediately after the first collision (12), particle 2 is 
stationary. Let the velocity of particle 1 at this time be called vl and that 
of particle 3 be called v3 (Fig. 1). Evidently v 1 >0 ,  and if the second colli- 
sion (23) is ever to occur, v3 > 0 also. Now after the second collision par- 
ticle 3 will be stationary and 2 will have velocity v3 (the particles exchange 
velocities). If 2 is ever to catch up with 1 so that the third collision (12) can 
occur, it is necessary that v3 > v~. After the third collision 1 will have 
velocity v3 and 2 will have velocity vl; v~ > 0, so 2 will not subsequently 
strike 3 (since 3 is still stationary and 2 is moving away), and vl > v3, so 
2 will not strike 1 either. Therefore no more collisions will occur. 

The approach for the multidimensional case is similar. We will 
enumerate all sequences of a certain length containing no subsequence 
which has previously been proved to be impossible. For  each enumerated 
sequence which we wish to prove impossible we will construct a separate 
geometric proof. 

We denote the particle which takes part in both the first and the 
second collisions as 2 and the other particle which takes part in the first 
collision as 1. All sequences therefore begin with (12)(23). If, as in the one- 
dimensional case, the first three collisions form a "recollision sequence," 
one imaginable four-collision sequence is 

L (12)(23)(12)(23) 

Note that the final three of the four collisions also form a recollision 
sequence (only the numbering is different). In the multidimensional case, 
however, another three-collision sequence is possible: (12)(23)(31), which 
we refer to as a "cyclic sequence." This is possible because unlike the 
one-dimensional case, 3 may collide with 1, as 2 does not necessarily lie 
between them. If the first three collisions of a four-collision sequence form 

131 121 I l l  

Fig. 1. Posit ions of three hard rods in the one-dimensional case. 
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a recollision sequence but the last three form a cyclic sequence, we have the 
distinct case 

F. (12)(23)(12)(31) 

This is the sequence for which initial conditions were obtained by 
Foch. 

Suppose the first three collisions of a four-c011ision sequence form a 
cyclic sequence and the last three form a recollision sequence. According to 
our numbering convention this would be denoted 

F' .  (12)(23)(31)(23) 

By time-reversal invariance, however, this does not constitute a distinct 
case. This can easily be seen by reading the sequence backward, substituting 
1 for 2, 2 fo r3 ,  and 3 for 1. 

Finally, suppose both the first three and the last three collisions form 
cyclic sequences. We then have the distinct case 

II. (12)(23)(31)(12) 

We will prove that neither sequence I nor sequence H can occur, so 
that any four-collision sequence must be F (or F'). Any possible sequence 
of five collisions, therefore, must both begin and end with either sequence 
F or its time-reversed variant F'.  Since in F the first and third collisions 
involve the same pair of particles but the second and fourth do not, the two 
included four-collision sequences cannot both be F; since in F '  the second 
and fourth collisions involve the same pair of particles but the first and 
third do not, the two included four-collision sequences cannot both be F'. 
Therefore either the first four are F '  and the second four F: 

IIL (12)(23)(31)(23)(12) 

or the first four are F and the second four F':  

IV. (12)(23)(12)(31)(12) 

To see that these are distinct cases, it suffices to note that only in 
case I V  do the same pair of particles take part in the first, third, and fifth 
collisions. 

We will prove that neither sequence I I l  nor sequence I V  can occur; 
therefore, there can be no more than four collisions. 

The four proofs are geometrically based and are all quite distinct. All 
have, however, points in common with the one-dimensional proof given 
above. We again choose a coordinate frame in which one of the particles 
is stationary between two of the collisions. We again choose a cylindrical 
coordinate axis (z axis) connecting the centers of two of the particles in 
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contact at the time of one of the intermediate c o l l i s i o n s - - n o t  the first or the 
last collision--so that the geometry of subsequent events (and that of 
preceding events) is relatively uncomplicated. The strategy once more is to 
show that some condition which must hold at the time of an intermediate 
collision in order for the last collision to occur in the future is incompatible 
with some other condition which must hold at that time in order for the 
first collision to have occurred in the past. 

In addition to the possibility of cyclic three-collision sequences, a 
difference with the one-dimensional case is that positions and velocities 
must be expressed as vectors rather than as scalars. However, we will be 
able to restrict ourselves to mentioning only the component of each vector 
parallel to a given axis and a single component perpendicular to that axis, 
so that the results hold for any number of dimensions greater than one. 

In our notation, we will call the location of particle n, its velocity, and 
their projections on the z axis r . ,  vn, rn~i, and vn=~, respectively, where 
is a unit vector along the z axis. We call the distance of particle n from the 
z axis r,,p and the speed with which particle n moves away  from the z axis 
v.p. (Formally, r.p = J r . -  r.z~l and Vnp times a unit vector in the direction 
of r . -  rnz2 is the projection of v. on r . -  r . ~  unless r.o = O, in which case 
v.p = [ v . - V . z ~ l . )  See Fig. 2. The particle diameters are taken to be unity. 
The collisions are referred to as I, II, III .... and take place at times t~, 
tH,...; t -  and t +  denote times immediately before and after t, respectively. 

3. LEMMAS 

Although our four proofs are not closely related, several common facts 
are used frequently: 

I ! 
Vnp] 

Vnz 

u 

ir~p 
rr~ D! 

Fig. 2. Vector definitions. 
Z 
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Lemma A. If particle n strikes particle m in the + x  hemisphere of 
n, where ~ denotes any axis in space, v,x is decreased. (In other words, if 
a particle is struck "in the front," it slows down.) This should be intuitively 
clear. 

Proof. Choose a coordinate frame in which m is stationary at t - .  
Let the z axis run from n to m at the time t of the collision and let 0 be 
the angle from the z axis to the x axis (see Fig. 3). Before the collision, 

v,x( t -  ) = V,z( t -  ) cos 0 + v,p( t -  ) sin 0 

where vnp is the magnitude of the projection of v,p on the xz  plane. The first 
term is positive, since v , z ( t - ) >  0 or the collision will not take place, and 
cos 0 > 0, or the contact point will be in the - x  hemisphere of n. At the 
collision, the particles exchange their z components of velocity, making 
v~z(t+ ) = 0, so that 

V.x(t + ) = 0 + V .p ( t -  ) sin 0 < V.x(t - ) 

L e m m a  B. In the recollision sequence (12)(23)(12), let the z axis 
run from its origin at r2(hi ) to r3(tn), with v2(tn+ ) =  0 (see Fig. 4). Then 

(i) r l p ( t n ) < l ;  (ii) r lz(qr)<0; (iii) r l z ( t m ) < O  

Proof.  (i) From t~ to fin, 2 lies on the z axis. Hence if rlp(tn) > 1 
and Vlp(tn) > 0, rip increases, so III will not occur; and if rlp(tii) > 1 and 
vlp(tn)<<.O, then looking backward in time, rip increases, so I did not 
o c c u r .  

(ii) The dynamical condition that two particles are moving closer 
together is that their relative velocity be opposed to their relative position; 
that is, (rb - ra)" (% - %) < O. 

Dt 

Z 

Fig. 3. Geometry of particles in Lemma A. 
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Fig. 4. Positions of the particles at /ii (Lemma B). 

At t n + ,  the corresponding condition for l to be approaching 2 (so 
that III can occur) is 

rl " v l = rl~vlz + rlpVlp < 0 (1) 

since r2 = 0 and v2= 0. 
At t n - ,  I must be moving away from 2 (so that I can have occurred), 

so 

r l ' ( u  1 - - v 2 ) > 0  [or  - r l "  ( v l - v 2 ) < 0 3  

since r 2 is still zero. v2p also is still zero, but now toaz(t n -  ) is nonzero, so 
multiplying out the dot product in the equation above, we have 

- r l z ( V l z  - V 2 z ( t i i -  ))  - rlpV~p < 0 (2) 

Adding this to Inequality (1), we obtain r l ~ ( q i ) v 2 ~ ( f i ~ - ) < O ;  but 
v2~( t~ t - )  > 0 or II would not occur, so r l~( tn)<0.  

(iii) This part follows directly from (i) and (ii), since r2 = 0 between 
II and III (1 cannot "get past" 2; see Fig. 4). 

4. PROOFS 

Theorem I .  (12)(23)(12)(23) is impossible. 

Proo f .  It will be shown that given II, the conditions for IV to occur, 
together with the conditions for I to have occurred, contradict a condition 
necessary for III to occur. The coordinates used will be the same as those 
used in Lemma B, and positions and velocities refer to tH unless otherwise 
specified (see Fig. 4). 
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As in the proof of Lemma B, the condition for 1 to be moving away 
from 2 (so that I can have occurred) is given by Inequality (2), which we 
rewrite as 

rl~(vl~-  v2~(tH- )) + rlpVlp > 0 

Since particle 3 is not involved in collision III, V3z(/ii I-l-)--- V3z(/ii q-). Also, 
at collision II, particles 2 and 3 exchange their z components of velocity, 
so that v3~( tn+)=v2~( tn - ) .  A necessary condition for IV to occur is 
Vzz(tli~-t- ) > v3z(tii]-t- ), so that 2 can "catch up" with 3; since v3~(tm+ ) = 
V2z( tn-) ,  this means Vzz ( tn i+)>v2~( tn -  ). Substituting this in the 
rewritten Inequality (2) and noting that r~z < 0 (Lemma B), we obtain 

rl~(vl~ - v2~(tm+ )) + rlpvl o > 0 (3) 

We now eliminate V 2 z ( t i i i +  ), rlz, and r ip  by writing them in terms of vjz, 
yap, and the angle 0 from the z axis to the vector - r l ( t i n )  (see Fig. 5). 

Since v2z(tm+) is jus t  the z component of the velocity transferred 
from 1 to 2 at tin, as v2 is zero up to that time, it is given by 

/J2z(/III ~- ) = (/)lz COS 0 - -  Vlp s in  O) cos  0 

Also, 

rl~ = --cos 0 -- vl~(t m -- tn) 

and 

rip .= sin 0 - rip(tin - tli) 

\ tm 

Fig. 5. Geometry of the particles at /li1 (Theorem I). 
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Substituting these three expressions into Inequality (3) and using that 
c o s 0 > 0  (since r~z<0), we find that Inequality (3) contradicts the 
necessary condition for III to occur, i.e., 

vlz cos 0 > vlp sin 0 (4) 

Details are given in Appendix B. 

Theorem I I .  (12)(23)(31)(12) is impossible. 

Proof. Again, we will show that a necessary condition for III to 
occur is contradicted by the requirements that IV occur and that I has 
occurred. We choose the z axis to run from the origin at rl(fin) to ra( t iH) ,  

in a reference frame such that v2(ti+)=0. We construct around rz(tx) an 
"action sphere" of unit radius whose surface we call S (see Fig. 6). For 
clarity of presentation, the proof will be given in several steps: 

(a) We will show in (b) that the condition for IV, given I, requires 
that both rl(fi) and r3( t l i  ) be on the + z  hemisphere of S. This implies 
that the distance along the z axis [r~z(ti) - r3z(tn)l < 1 (see Fig. 6). 
Since r3z(tm)-rl~(t i i t )=l,  this in turn implies [r3z(tm)-r3z(tn)] > 
[r lz(f i t i )  - -  rl~(ti)l (see Fig. 6). Unless V3z(tli I -  ) > Vlz(ti i  I -  ) this is impos- 
sible, since [rlz(tIir)-rlz(fi)[ > ]rlz(tin)-rlz(tH)[ (1 travels in a straight 
line between I and III), so that ]r3~(tm)-r3z(tn) ] >]rlz(tm)-rl~(tH)], 
implying v3z(tii~-)>Vl~(tii~-). Contradicting this, however, is the fact 
that by the construction of our coordinate system V3~(tHI-- ) < Vl~(tm-- ) is 
required for III to occur. 

(b) It remains to show that rl(tt) and r3(tH) are on the + z  hemi- 
sphere of S. The fact that 2 is stationary between I and II E V z ( t ~ + ) =  0 ]  

f at 

r3(tlii) 

Fig. 6. The action sphere and positions of particles used in the proof of Theorem II. 
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requires that rl(ti) and r3(til ) are both on S. From v2(q+ )=  0 and the fact 
that 1 travels in a straight line between I and III, it follows that after I the 
path of 1 cannot pass through S (particle 2 would be "in its way"); hence, 
rl(tni) is outside S. We will show in (c) that r2~(q)<0 and in (e) that the 
z axis passes through S. From this and the fact that the path of 3 lies on 
a tangent to S between II and III, it follows that both rl(q) and r3(tii ) are 
indeed on the + z  hemisphere of S (see Fig. 6). 

(c) It still remains to show that r2z(fi)< 0 and that the z axis passes 
through S. To show the first, we construct a z' axis with the same origin 
as the z axis and which runs to that origin from the center of S (see Fig. 7). 
Now if, as we will show in (d), r3z,(tlli)> O, then r3( tm)  and r2(ti) are on 
opposite sides of the origin r~(tn~) on the z' axis, hence also on the z axis. 
The latter yields r2~(ti)< 0. 

(d) We now show that r3~,(tni ) > 0 is implied by the condition that 
IV occur. Since r3(tm) is within unit distance of the z' axis, r3(tn) must lie 
on the +z '  hemisphere of S. But then by Lemma A, since v2z,( tH-)=0,  
Vzz,(til + ) < 0, which implies that v~,(tm + ) < 0 also or else IV could not 
occur (1 would not be moving toward 2). Now from the definition of the 
z' axis and the fact that the path of 1 cannot pass through S, it follows 
that v l~ , (q+)>0 .  But Vl~,(tm-)=v~,(fi+) and vl~,( tni+)<0,  so Vlz, 
must be decreased by III; Lemma A then implies that at tii I 3 strikes 1 in 
the +z '  hemisphere of 1, and then since r~z,(tm)= 0 we have that indeed 
r3~,(qn) > 0. 

(e) It finally remains to show that the z axis passes through S. To do 
this, we will show that the z axis makes a smaller angle with the z' axis 
than does the path of 1, which intersects S at r~(ti) (see Fig. 8). 

In what follows the positions and velocities refer to t i n -  unless 
otherwise specified. 

~ r3(tlii) 

z v 

Fig. 7. Definition of the z' axis used in the proof of Theorem II. 
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The vector - v l  leads from the origin to S. Call its component parallel 
to the z axis -v t z  and the rest -v lo .  It suffices to show that -v~0 is in the 
+z '  direction (see Fig. 8). For IV to occur, Vl( tm+) must be in the - z '  
direction, as was shown above; but Vl(tm + ) =  v~ o + v3z (1 and 3 exchange 
their z velocities at tin). Since - Vlo = v~z - Vl(t u~ + ) and - Vl(tm + ) is in 
the +z '  direction, it remains only to show that v3z is in the +z '  direction. 
Clearly, unless v3, > 0, -v3  cannot intersect S (see Fig. 7) and II could not 
have occurred. Since (as shown above) r3z, > 0, the angle between the z and 
z' axes is acute; hence v3z>0 implies that v3~ is in the +z '  direction, 
completing the proof. 

T h e o r e m  III. (12)(23)(31)(23)(12) is impossible. 

Proof. Once again we show that the conditions for the last collision 
to occur and for the first collision to have occurred are incompatible with 
the requirement that III occurs. We choose a frame of reference in which 
3 is stationary at t in+ and run the z axis from r3(tm) to ra(tn~) (see 
Fig. 9). 

We first apply Lemma B(iii) to the recollision sequence II, III, IV to 
get r2~(tw) < 0 (see Fig. 9) and hence by Lemma A, v2~(tw+ ) < v2,(fiv- ). 
But v2,(ttv-) = v2~(tm), so V2z(tiv+) < v2~(tm). However, rl~(qv) > 1, 
since v,~(tlv)> 0 [-it is just the velocity v3z(tnt-) transferred from 3 to 1 
at III if III occurs]. Therefore for 2 to "catch up" with 1 (so that V occurs) 
we must have v2~(qv+) > vl~(ttv). Therefore, since v2~(tw+) < v2~(tm), 
it follows that v2~(tm)>Vlz(fiv). But Vlz(ttv)=V3~(tm-), so that 
v~z( tHt) > v~z( t ~ -  ). 

Fig. 8. The path of particle 1 and its velocity at t i n - ,  as used in part  (e) of the proof 
of Theorem II. 
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i!iiiiNii iN!iiiiN iiii    IiiiiNNiiiiNiNi   
> 

z 

Fig. 9. Positions of the particles at tll I (Theorem III). 

However, we will now show that if V2z(tlii) • / )3z( t l i i - -  ) as required for 
V to occur, then I cannot have occurred. 

First, by LemmaB we have r2z(tin)<O=r3~(tm). Tracing back in 
time to II with v2~(tni ) > v3z(tm-) then yields r2z(tn)< r3~(tn). Then using 
again Lemma A, one obtains 

V2z(/ ' l i -  ) > V2z(tli q- ) (5) 

However, v2~(tn+)=v2~(tm) and V2z( / i I i )>Va~( tw) ,  so that with 
Vlz(hv) > 0 one has v2~(tn + ) > 0 and [by Inequality (5)] V2z(tn- ) > O. 

Next we show that these conditions imply that I cannot have occurred. 
For, by construction we have rl~(tm)= 1 and v3~(qn+ ) = 0 ,  and since the 
velocity transferred from 1 to 3 at tin is vl~(tni-)=v3~(tni+), we have 
vlz(t in-)= 0; therefore also / ) l z ( t l i )=  0 and thus rlz(gXi ) = ra~(tm)= 1. On 
the other hand, by Lemma B(ii), r2z(ti11)<0 (see Fig. 9), and then, since 
Vzz(til-t- ) > 0, we have also r2~(tn) < 0. Therefore, because of the relative 
positions of 1 and 2 at time II (see Fig. 9), v2~(fi~-)>0 implies that 1 
cannot have occurred. 

T h e o r e m  IV. (12)(23)(12)(31)(12) is impossible. 

ProoL Again we start at III and consider the conditions for V to 
occur in the future and for I to have occurred in the past. We choose a 
frame of reference in which 1 is stationary at tin + and run the z axis from 
rl(tni ) to rz(tm) (see Fig. 10). 

We introduce the velocity a = vlz(tli I - )  = Vzz(tlii+ ), which charac- 
terizes the importance of III in this collision sequence, since the condition for 
III to occur is e > 0. Suppose now that we change ~ without changing any- 
thing else at time tnx. Then collision IV (looking forward in time from III) 
and collision II (looking backward in time from III) will not be affected, 
since each collision involves only 3 and that particle whose z velocity is 
zero (1 in the case of IV and 2 in the case of II). 
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Fig. 10. Positions of the particles at t m (Theorem IV). 

We will show in the next paragraph that if for some e, for which I did 
occur and V will occur, we decrease the value of e without changing any- 
thing else at time till, I will still have occurred in the past and V will still 
occur in the future. Thus e can be brought down to zero and the first and 
last collisions will still occur. At e = 0, however, I I I  does not actually occur 
(this is a so-called "grazing collision"), so that the sequence of collisions is 
(12)(23)(31)(12), which cannot take place according to Theorem II. 3 
Therefore there cannot be an e for which I and V both occur. 

To determine at tii (looking backward in time) whether I occurs, and 
to determine at tw (looking forward) whether V occurs, we use the formula 
[ R + V t l  for the distance at time t between particles m and n, where 
R=rn( t=O)-rm( t=O ) and V=-vn(t=O)--Vm(t=O). Let R = [ R I  and 
V=- [VJ. Particles rn and n will then collide at a time t such that IR + VtJ = 1. 
Squaring and solving for t gives 

t ~ -  { - - R "  V - [(1~ ~ V )  2 - V 2 ( R  2 - 1)]1/2}/V 2 

The minus sign for the square root is used since the collision takes place 
at the earliest time at which ]R + Vtt = 1. If the collision is to take place, 
t must be real, so that ( R ' V ) 2 >  V Z ( R  2 -  1). We have already noted that 
for the collision to take place in the "future" the particles must be 
approaching each other, so that R .  V < 0; hence a necessary and sufficient 
condition for the collision to occur is - R "  V > V(R 2 -  t )  1/2 or 

f = -  - R .  V -  V(8 2 - 1) 1/2 > 0 (6) 

We now compute R and V in this formula for our two cases. 
At h i -  the condition for I to have occurred is f l ( e ) > 0  with R =  

r l ( t i i ) -  r2(tli) and V = - [ v l ( t n ) -  v 2 ( t n - ) ] .  (The minus sign is due to the 

3 Thus,  if there is a counterexample to Theorem IV, there must  also be one to Theorem II. 
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fact that we are looking backward in time.) Since V x z ( t n ) = v l z ( t m - ) = e  
and V2z(tm - ) = V~z(tm + ) = 0, it follows that Vz = v 2 z ( t n -  ) - ~ and Rz = 
- [1 + e ( t m  - tH)]. [Here we used that R(txi) = R(tm) - V ( t m -  )(tin - tn) 
and that at tin, r l ,  = 0 and rzz = 1.] 

Similarly, at tw + the condition for V to occur is f z ( e )>  0 with R = 
r l (qv)  - rz(tw) and V = vl(tw + ) - Vz(tw). Since V2z(qV) = v2~(tm + ) = e 
and Vlz ( tn i+  ) = V 2 z ( t m -  ) = 0, it follows that V~ = Vl~(tiv + ) - e and Rz = 
- [ 1 + e ( t l v -  tin)]. [Here we used that R(tw) = R(tm) + V(tm + )(tw - fin) 
and that at tin, rl~ = 0 and rzz = 1.]  

In both cases V~ is of the form w - e  and R~ is of the form - ( 1  +et) ,  
with e > 0  and t > 0 .  Here w, t, and those components of R and u 
perpendicular to the z axis are all independent of ~. Substituting these 
expressions into Inequality (6) and using that in both cases  R 2 <  2 (which 
we will prove below), we find that f~ and f2 are monotonically decreasing 
functions of c (details are given in Appendix C). Then, if f~ > 0 and f2 > 0 
hold for any e > 0, they hold for e = 0; thus the necessary and sufficient 
conditions for collisions I and V require that Theorem II be violated. 

It remains to prove that R 2 < 2  at tix and fiv in the sequence 
(12)(23)(12)(31) (as stated by Sandri et  al.(6)). 

At ti~ we use the same coordinates as in Lemma B (Fig. 4), By this 
lemma r~p ( t~ )<  1, so we need only to show that - r ~ ( t n ) <  1. Again by 
Lemma B, r l~( t la i )  <0,  SO that Lemma A requires v~(tn) = v l z ( t l l i -  ) > 
v ~ ( t m +  ). But unless v ~ z ( t m +  ) > v3~(tm+ ), 1 will never "catch up" with 3 
and IV will not occur; this implies that v ~ z ( t n i + ) > v 3 ~ ( t n + ) .  [Here we 
used that 3 does not participate in III, so v3~(tni + ) = v3~(ql + ). ] However, 
V3z( tn+ ) = V 2 z ( t n -  ), so IV requires vl~(tn) > v 2 z ( t n -  ), or in other words 
- v ~ ( t n )  < - v2~ (q i - ) .  On the other hand, this condition (1 is "fleeing" 2) 
plus the fact that LemmaB requires r ~ ( t ~ ) < 0  imply that indeed 
- r l~ ( tn )  < 1, since otherwise I could not have occurred. 4 

The above proof  that R 2 < 2 at tli  proves also that R 2 < 2 at tw, since 
the final four collisions, reading backward and renumbering, are again 
(12)(23)(12)(31) and R is again defined at the time of the "second" 
collision. 

5. D I S C U S S I O N  

We now make some remarks concerning extensions of the present 
results. 

4 Note that the proof that R2< 2 at tli is independent of whether collision V occurs; see 
point 3 in the Discussion below. 
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1. The one-dimensional case is far simpler than the case of two or 
more dimensions, as in one dimension the collisions simply "sort" the 
velocities until ri < rj implies vi < v j ,  after which the particles are all moving 
apart. In the case of equal masses, the collisions act according to the binary 
sort algorithm (if for a neighboring pair i, j of particles ri < rj but v; > vj, 
the pair must eventually collide and exchange their velocities). The number 
of collisions, therefore, is just the number of pairs i, j with r~ < rj but vi > vj, 

so that the maximum number of collisions is (~). This is so regardless of the 
diameters of the particles, which may be unequal. A detailed proof is given 
in Appendix A. 

2. In kinetic theory, because of the cluster expansions used, one must 
take into account correlations among particles resulting not only from 
sequences of collisions which actually take place (real or "interacting" 
collisions), but also from sequences which would  have taken place had it not 
been for an intervening (real) collision. Such sequences can be accounted for 
by considering sequences of collisions such that for some of the collisions the 
particles do not interact ("noninteracting" collisions, in which the particles 
simply continue their uniform motion "through each other"). (8) Fortunately, 
for a given total number of interacting and noninteracting collisions, the 
geometry is much simpler when one or more collisions are noninteracting. 
Sengers et  aL (9) proved that the maximum number of collisions remains 
four, even if one includes noninteracting collisions. 

3. The various restrictions on the motion of the three hard spheres 
which appear in our proofs may find application in the calculation of the 
numerical effects of certain collision sequences on the transport properties 
of a hard-sphere gas. For example, the results of Sengers e ta l .  (3) for a 
moderately dense gas of hard spheres show that the contributions of the 
four-collision sequences to the viscosity and thermal conductivity of such a 
gas are four orders of magnitude smaller than those from typical three- 
collision sequences. In addition, these restrictions may also have a bearing 
on whether certain sequences of collisions among more  than three particles 
are possible. For example, the position of particle 1 at the time of collision 
II in the sequence (12)(23)(12)(31) is severely restricted: in the proof of 
Theorem IV we saw that at time II, R = Ir, - r2 j  < , / 2  was required; on the 
other hand, Lemma B(i) requires that at the same time Irl - r3l > ,,/2 if the 
first three collisions are to occur (see Fig. 4). 

4. The fact that our proofs are independent of the dimensionality of 
the system (provided it is greater than one) leads us to the following con- 
jecture: the maximum number of collisions which can take place among n 
identical hard spheres is independent of the dimensionality d of the system, 
provided d > ~ n - 1 .  (This is of course trivially true for two spheres.) The 
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conjecture is reinforced by the consideration that the introduction of each 
additional identical sphere after the first introduces one more quantity with 
dimension "length": its distance from the center of mass of the spheres 
already present. The additional angular degrees of freedom introduced may 
in a certain sense be ignorable coordinates. Thus we conjecture for example 
that the maximum number of collisions among four identical spheres may 
be greater in three dimensions than in two, but should be the same in four 
or more dimensions as in three. 

5. Finally, we note that no general line appears in our four proofs 
which would yield a clue as to how to generalize them to more complicated 
cases such as collision sequences among four spheres. It would appear 
that each collision sequence has its own particular geometry, so that each 
sequence (all of whose subsequences are possible) may have to be examined 
individually. 

A P P E N D I X  A 

Here we prove that n classical Newtonian hard particles of arbitrary 
diameters but equal mass constrained to move in one dimension can 
undergo at most (~) collisions, and that for any set of diameters there are 
initial velocities which will bring about (~) collisions. 

Let the positions ri of the particles increase from left to right; let the 
velocity of the leftmost particle at time zero be called vl, that of the second- 
leftmost v2, etc. Let r~(t) denote the position at time t of the center of that 
particle which at time t has velocity vl, etc. Note that the Ve never change; 
they are merely associated with different particles. There is no need to 
number the particles, only the velocities. 

Let i < j without loss of generality. Then at time zero the "total gap" 
A = rj - re - 27 > 0, where 22(t) is the sum of half the diameter of the particle 
with velocity vi, half the diameter of the particle with velocity vj, and the 
sum of the diameters of all particles between them. (Particles cannot 
overlap.) 

Suppose vi<vj .  Then zl will always increase (at a constant rate); for 
r j - r  i increases unless one of the two particles undergoes a collision; but 
any decrease in r j - r i  due to the instantaneous transfer of velocity from 
one particle to another (Enskog's "collisional transfer") ~2) is canceled by 
the corresponding decrease in 27. For instance, if a particle with velocity 
vk> vj hits the particle vj from the left, r j - r~  instantaneously decreases 
by the sum of the radii of the colliding particles, but 27 instantaneously 
decreases by the same amount, since now there is one fewer particle 
between the particle with velocity v~ and the particle with velocity vj. 
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In the above case there will be exactly zero collisions between a 
particle with velocity v,- and a particle with velocity vj. 

Suppose, on the other hand, v~ > vj. Then A will decrease (at a con- 
stant rate) until there are no particles between the particle with velocity v~ 
and that with velocity vj; it will continue to decrease (at the same rate) 
until the particle with velocity v~ collides with the particle with velocity vj. 
Af ter  the collision the new A (r~ - rj - Z )  will thereafter increase indefinitely 
(at the same rate at which the old zf decreased) by the argument above. 

In this case there will be exactly one collision between a particle with 
velocity v; and a particle with velocity vj. 

Thus there can be at most one collision between some particle with 
velocity v~ and some particle with velocity vj, and the total number of 
collisions will be equal to the number of i < j pairs with v~ > vj. Then the 
maximum number of collisions altogether is (~), where n is the number 
of particles. Furthermore, this maximum can be realized: merely let the 
velocities at time zero decrease monotonically from left to right. 

APPENDIX B 

We show that Inequality (3) in the proof of Theorem I cannot hold. 
Making the indicated substitutions in Inequality (3) yields 

[ - -  COS 0 - -  V l z ( t i i  I - -  tn)]  [vlz - vlz cos ~ 0 + rip sin 0 cos 0] 

+ [sin 0 -  Vlp( tm - tn)]  > 0 

Simplifying, we obtain 

sin 20(vlp sin 0 - vl~ cos 0) 

- ( t in - q~)(v~z sin 2 0 + vlzvlp sin 0 cos 0 + V~p) > 0 (A1) 

This, however, contradicts Inequality (4) in the proof of Theorem I: 

V~z cos 0 > v~p sin 0 

For, if Inequality (4) holds, the first term in Inequality (A1) is negative, 
requiring 

v12~ sin s 0 + v~zvtp sin 0 cos 0 + V~p < 0 

However, since cos 0 > 0, v~v lp  sin 0 would then have to be negative, and 
as cos 0 < 2, 

VlzV~o sin 0 cos 0 > 2VlzVl~ sin 0 

requiring v12~ sin 2 0 + 2v~V~p sin 0 + V~p < 0, which is not possible (the 
left-hand side is a complete square). 
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A P P E N D I X  C 

W e  show tha t  f in the p r o o f  
decreas ing funct ion of e. W e  have 

with 

Murphy and Cohen 

of Theo re m IV is a mono ton i ca l l y  

f =  - R "  V - V (R  2 - l )  1/2 

R ~ = - ( l + e t ) ,  V z = w - e ,  t > 0 ,  e>~0, R 2 < 2  

We call  the componen t s  of R and  
and  V p = V  - Vz~ with  Rp = [Ro[ 
V p - [ ( V ~ +  2 2 2 1/2 Vo)(R ~+ R o -  1)1 

d f = [ _ ( l  +e t )  V_ 
de (R 2 -  1 

N o w  (R 2 -  1)1/2< 1 and  I w - e l  < 

hence df /& < O. 

V or thogona l  to the z axis Rp ~ R - Rz~ 
and Vp =- IVpL. Then  f = - R ~  V~ - R p .  
and  

V, so ( w - e ) - V / ( R  2 -  1) 1/2 is negative;  
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